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The crystallization kinetics of InF3-based glass 

J. M A L E K * , Y .  MESSADDEQ, S. INOUE, T. MITSUHASHI  
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, 
Japan 

The crystallization kinetics of (InF3)4o(ZnF2)2o(BaF2)15(SrF2)2o(GdF3)2(LaF3)1(DyF3)2 glass was 
studied by differential scanning calorimetry. It was found that the two-parameter 
~estak-Berggrenequation gives a more quantitative description of the crystallization 
process than the Johnson-MehI-Avrami model. The thermal stability criteria allowing 
comparison of different glass forming systems are discussed. 

1. Introduction 
The discovery of new fluoride glasses based on InF3 
has attracted increasing interest because they could 
extend the possibilities of the standard ftuorozirconate 
glasses already in use [1]. Their extended infrared 
transmission range will allow the manufacture of op- 
tical fibres operating up to 5 lam, making possible the 
delivery of CO laser power [2]. Recently, much atten- 
tion has been focused on active fibres for optical 
amplification [3]. It has been reported that the 
phonon energy in these glasses is lower than that in 
ZBLAN glass and the radiative quantum efficiency in 
the Pr3+-doped InF3-based glass is approximately 
twice that of ZrF~-based glass [4]. 

However, as applications of these glasses are cen- 
tred upon optical fibres, it is necessary to investigate 
the crystallization kinetics in order to control nuclea- 
tion and crystal growth during preform manufactur- 
ing and fibre drawing. 

The aim of this work was to show a simple and 
reliable method of kinetic analysis of differential 
scanning calorimetry (DSC) data. 

2. Theory 
Usually it is assumed that the heat flow, ~, generated 
during the crystallization process is directly propor- 
tional to the rate of the crystallization process (da/dt) 

@ = AH(d~/dt)  (1) 

AH being the enthalpy of the crystallization process. 
Assuming the Arrhenius rate constant K ( T )  = A exp 
x ( - E / R T ) ,  the kinetic equation is then expressed in 
the following form [5] 

= AH A e- ~f(a) (2) 

where A is the pre-exponential factor and x = E / R T  
is the reduced activation energy. The function f((x) 
represents the mathematical expression of the phe- 
nomenological kinetic model. The functions more fre- 

quently used for the description of a crystallization 
process are summarized in Table I. 

The aim of kinetic analysis of the crystallization 
process is to determine the best kinetic model provid- 
ing the calculation of reliable kinetic parameters. It is 
well known, however, that the kinetic parameters 
A and E in the kinetic Equation 2 are mutually corre- 
lated [9, 10]. So it is practically impossible to deter- 
mine all kinetic parameters by conventional non-lin- 
ear regression algorithms of a single DSC curve. From 
this point of view it seems reasonable first to calculate 
the activation energy and then determine the kinetic 
model by the method described below. 

The calculation of activation energy is based on 
a multiple-scan method in which several measure- 
ments performed at different heating rates, [3, are 
needed. A very simple method was proposed by Fried- 
man [11] for nth order reactions. However, it was 
made clear later [12-14] that this method is applic- 
able to various processes. This expanded Friedman 
method follows from the logarithmic form of Equa- 
tion 2 

E 
ln@ = l n [ A H A f ( ~ ) ] - - -  (3) 

R T  

The activation energy is calculated from the slope of 
the plot of the logarithm of normalized heat flow at 
a given crystallization degree, plotted against the re- 
ciprocal temperature. Another method of calculation, 
known as the Kissinger's method [15], is based on the 
condition for the maximum for DSC peak" 

l n ~ ,  2 = I n - f ( % ) A R  E 
E RTp (4) 

where Tp and % are the peak temperature and crystal- 
lization degree at the DSC peak, respectively, and [3 is 
the heating rate. The activation energy is then cal- 
culated from the slope of the ln([3/Tp a) versus 1/Tp 
dependence. In fact, the first term on the right-hand 
side of Equation 4 is constant only for a first-order 
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TAB LE I Kinetic models used for the description of the crystalli- 
zation processes 

Model f(~) 

Johnson-Mehl-Avrami (JMA) n(1 - c0[ - ln(1 - c0] ~ ~/" 
equation [6, 7] 

Sestak-Berggren (SB) r - c~)" 
equation E8] 

process, i.e. f t a ) =  1 - a ,  because in this case 
f'(~) = - 1. Nevertheless, it can be shown [-16] that 
for other kinetic models the error in the activation 
energy determined by this method does not exceed 
5%. If the activation energy is known, the kinetic 
model which best describes experimental DSC data 
can be found. 

It is useful to define [9, 17] the function z(a) which 
can easily be obtained by a simple transformation of 
DSC data 

z(a) = ~(x)Cb T / ~  (5) 

where re(x) is an approximation of the temperature 
integral which has to be introduced because Equa- 
tion 2 cannot be integrated analytically. This approxi- 
mation is usually expressed as a rational function 
and it is described in more detail elsewhere [18]. 
The simple Gorbachev's approximation [19], 
re(x) = 1/(x + 2), is sufficiently accurate in many cases. 
The z(a) function is usually normalized within the 
(0, 1) interval and it always exhibits a maximum. It 
can be shown [9] that for the JMA model the max- 
imum should be at ~ = 0.632 within about 1% error 
and that it practically does not depend on the value of 
activation energy used for calculation of the z(a) func- 
tion. (The maximum of the z(a) function should not be 
confused with the crystallization degree at the max- 
imum of DSC peak % which, of course, strongly 
depends on E.) Therefore, the  maximum of the z(a) 
function can be used as a very sensitive test of applica- 
bility of the JMA model. If the value is lower than 
0.632, then the two-parameter SB model could be 
applied for the description of many crystallization 
processes. 

Similarly, we can define the y(a) function [9, 20] 
which is again easily obtained by a simple transforma- 
tion of DSC data 

y(a) = abe x (6) 

The maximum of this function aM is confined to the 
interval 0 _< a M < ap where ap is crystallization degree 
at the maximum of DSC peak. The aM value is impor- 
tant for the calculation of the kinetic exponent n (or 
m). If the kinetic model has been discriminated by the 
method described above, then the kinetic exponent 
can be calculated as given below. 

2.1. The JMA model 
If the function y(a) has a maximum at aM > 0 the 
kinetic exponent n can be calculated using the follow- 

ing equation [9, 20] 

1 
n = (7) 

1 + l n ( 1  - aM) 

If the maximum of the y(~) function is located at 
aM = 0, then the parameter n can be calculated by 
means of gatava's method [21], from the slope of the 
plot of i n [ - l n ( 1 -  a)] versus 1/T which is nE/R. 
Another method of calculation of this parameter is 
based on the relationship derived from the condition 
for the maximum of the DSC peak [9] 

1 - XprC(Xp) 
n - ( 8 )  

ln(1 - %) 

Satava's method usually gives slightly higher values of 
the kinetic exponent n than Equation 8. According to 
our experience [22], an average of these two values is 
a good approximation of the kinetic exponent. 

2.2. The SB model  
The ratio of the kinetic exponents m/n can be cal- 
culated from the maximum of the y(a) function [9] 

~M 
m/n -- (9) 

1 - O~M 

Equation 2 may be written in the following form 

ln(q)e x) = ln(AHA) + nln[~m/"(1 - ~)] (10) 

The kinetic parameter n is then calculated [9] from the 
slope of linear dependence of ln(qbe x) versus 
In[0("/"(1 - a)] plotted in the interval a E (0.2, 0.8). 

The pre-exponential factor is then calculated from 
the condition for the maximum of the DSC peak [9] 

, - [3xp (11) 
lnA = xp + mTpf,(ap) 

The consistency of the kinetic model applied is usually 
verified by testing the invariance of sets of kinetic 
parameters calculated for different scanning rates 
[9,23]. 

3. Exper imenta l  procedure  
The glass was prepared in a conventional way by 
melting, casting and annealing. The fluoride powders 
used to prepare the desired composition 40%InFa, 
20%ZnFz, 15%BaF2, 20%SrFz, 2%GdF3, 1%LaF3, 
2%DyF3 (tool %) were mixed and heated at 700 ~ for 
melting and then at 900 ~ for refining. Then the melt 
was poured on to a brass mould preheated at the glass 
transition temperature, Yg. 

The prepared glass was crushed into a powder and 
then sieved to particle size 420 ~tm. This powder was 
used for the crystallization kinetics measurements. 
Samples of about 10 mg were encapsulated in alumi- 
nium DSC pans and they were measured using 
a Perkin-Elmer DSC-7 instrument coupled with 
a 7700 Station. The instrument was previously calib- 
rated with indium, lead and zinc standards. Non-iso- 
thermal DSC curves were obtained with selected 
heating rates ( 2 -2 0 K m in  -1) in the range from 
100 500 ~ The kinetic analysis of the DSC data and 
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all calculations were performed by the TA-system 
software package [9]. 

4. Results and discussion 
Typical DSC curves of the (InF3)4o(ZnF2)2o(BaF2)15- 
(SrF2)2o(GdF3)2(LaF3)I(DyF3)z glass are shown in 
Fig. 1. The glass transition appears in the region 
300-307~ and it is associated with heat capacity 
change ACv = 0.25 + 0.04 J g - ~ K -  ~. There are vari- 
ous definitions of Tg. We prefer the integral method 
[24], where Zg is calculated as an intersection point of 
enthalpic curves for glass and undercooled liquid. The 
value of Tg determined in this way (Zg --- 305 ~ de- 
pends only slightly on the heating rate and the stan- 
dard deviation is lower than 2 ~ 

The exothermal peaks observed in the DSC experi- 
ments correspond to the crystallization of several 
phases. The enthalpy of this crystallization process 
was determined to be - AH = 68 + 5 j g - 1 .  These 
non-isothermal DSC curves were used for calculation 
of kinetic parameters of the crystallization process. 
The values of the activation energy calculated by the 
Friedman method for different values of the crystalli- 
zation degree are shown in Fig. 2. The dashed line 

5 (K rn in  1 ) 

lO (KmJn  1 ) ~  

1 ~  ~ 15 (K min ) 

280 330 380 430 480 

T(~ 

Figure 1 DSC curves of (InF3)r 
(LaF3)I(DyF3)2 glass measured at different heating rates. 
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Figure 2 The values of the activation energy as a function of the 
crystallization degree: (B) calculated by the Friedman method; 
( - - - )  the results of the Kissinger method. 
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corresponds to the value of activation energy deter- 
mined by the Kissinger method. As is evident from the 
error bars, both methods give similar results within 
about 10% error. 

Assuming that the value of activation energy of the 
crystallization process is E = 229 +_ 20 kJ mol -  ~, we 
can calculate both y(00 and z(c 0 functions using Equa- 
tions 5 and 6. These functions normalized within the 
(0, 1) interval are shown in Fig. 3 for different heating 
rates (points). The maximum of the z(~) function is 
localized at a = 0.52 + 0.02 and it is practically invari- 
ant with respect to the heating rate. It is clear that this 
value is considerably lower than 0.632, therefore the 
JMA model can hardly be used and the SB model 
seems to be more appropriate for the description of 
the crystallization process in the studied glass. 

The maximum of the y(~) function was found to be 
~M = 0.38 + 0.02 and again it does not depend on the 
heating rate. The kinetic parameters calculated using 
Equations 7 11 are summarized in Table II for both 
kinetic models. 

Fig. 4 shows experimental DSC data and curves 
calculated using kinetic parameters (see Table II) cor- 
responding to  the SB model and JMA model. The 
JMA model was derived for isothermal transforma- 
tion conditions and it can only be applied if several 
additional assumptions are fulfilled [6, 73. One of the 
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Figure 3 (a) Normalized y(a) function; (b) normalized z(a) func- 
tion. Heating rate: (EB) 5, (A) 10, ( i )  15, (&) 20 Kmin -1. The points 
were calculated from Equations 5 and 6. The maxima are marked by 
line. 



T A B L E  II The kinetic parameters of the crystallization process 

Model m n E(kJmo1-1) LnA(s -1) 

SB 0.71 _+ 0.03 1.16 _+ 0.04 229 + 20 36.0 + 0.2 
JMA - 1.30 _+ 0.05 229 +_ 20 35.7 _+ 0.2 
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Figure 4 Experimental (points) and calculated DSC peaks corres- 
ponding to the crystallization process at various heating rates for 
( ) the SB model and ~ ~ the JMA model. The kinetic para- 
meters used for calculation are summarized in Table II. 

most important assumptions is spatially random nu- 
cleation which limits the application of the JMA 
model to cases of homogeneous nucleation or hetero- 
geneous nucleation at randomly dispersed nucleation 
centres. Another assumption is that the growth rate of 
a new phase depends only on temperature and not 
time. It was shown by Henderson [25] that the JMA 
equation can be applied in the non-isothermal condi- 
tions (e.g. DSC measurement) if the nucleation process 
takes place in early stages of transformation and the 
nucleation rate is zero thereafter. These criteria are 
evidently not fulfilled in this case because the DSC 
curve calculated for the JMA model is different in 
comparison with the experimental trace. It is evident 
that the SB model gives a better quantitative descrip- 
tion of the crystallization process. The kinetic expo- 
nent rn and n of the SB equation are linked with the 
mechanism of the crystallization process. Unfortu- 
nately, the link is still not clear. It was shown [26], 
however, that physically meaningful values of the 
parameter m should be confined to the interval 
0 < rn < 1 which is fulfilled in this case. 

The values of Arrhenius kinetic parameters, i.e. 
E and lnA, are practically identical for both JMA and 
SB models (Table II). The value of the activation 
energy, E, obtained here is lower compared to IZBSC 
glasses [27]. There are two different mechanisms 
which can explain the activation energy of the crystal- 
lization process as obtained from DSC measurement. 
Melling and Uhlmann [28], have shown that for con- 
gruently melting glass-formers the crystal growth rate 
will be limited by the viscosity of the glass-forming 
liquid. In this case, E could be  interpreted as the 
activation energy of viscous flow. Secondly, it is pos- 
sible that the crystallization of complex glass-forming 
systems may be determined by processes at the 
melt crystal interface. In this case, E corresponds to 

the activation energy for the rate-limiting step. In 
many cases, linear growth kinetics is observed which is 
associated with diffusion-controlled crystal growth. 
To distinguish between these two mechanisms, further 
study is needed. 

The kinetic parameters E and A are very important 
for the estimation of the thermal stability of glass 
(TSG). It has been proposed by Surifiach e t  al. [29] 
that the TSG could be estimated reasonably by calcu- 
lating the Arrhenius crystallization rate constant at 
the glass transition temperature 

p K ( rg )  = - log(Tg) 

= 0 . 4 3 4 ( E / R T  - In A) (12) 

This criterion is very useful because it can be used to 
compare different glass-forming systems. However, in 
some cases it is not so easy to obtain reliable kinetic 
parameters E and ln A, especially for the systems 
where multiple crystallization peaks are observed. For  
such cases it is more convenient to use the dimension- 
less criterion G defined [30] as 

T g -  Tc 
G - (13) 

audc* 

where To is the extrapolated onset of the crystalliza- 
tion peak, AHz (J g 1) is the total crystallization heat 
(corresponding to the sum of all crystallization peaks) 
and C* is the heat capacity of undercooled melt. It can 
be estimated using the formula C* ( j g - l K - a )  
2 8 / M '  + ACp where M '  is the average molar weight of 
glass and A C  v (J g - 1) is the heat capacity change a t  r g .  

All parameters needed to calculate G are obtained by 
a single DSC scan. It was shown recently [-30, 31] that 
G is closely related to pK(Tg) and so it can be con- 
sidered as a good tool for estimating the thermal 
stability of glasses, especially when comparing various 
glass-forming systems. Another TSG criterion was 
introduced by Saad and Poulain [32] 

S = ( T p -  Tc)(Tc- Tg)/T~ (14) 

All these TSG criteria calculated for the (InF3)a0- 
(ZnF2)2o(BaF2)I 5(SrF2)2o(adF3)2 (LaF3) ~ (DyF3)2 
glass are shown in Table III. The error limits shown in 
Table III correspond to the variation of thermal stab- 
ility criteria with respect to the heating rate. It is 
evident that pK(Tg) and G criteria are less sensitive to 
the heating rate than the criterion S. As criterion S is 
more influenced by experimental conditions, such as 
heating rate or sample mass, it often fails when one tries 
to compare different glass-forming systems. On the 
other hand, criteria pK(Tg) and G allow direct com- 
parison of the thermal stability of different glass-forming 
systems. From this point of view the thermal stability 
of the (InF3)40(ZnF2)2o(BaF2hs(SrF2)2o(GdF3)2- 
(LaF3)I (DyF3)2 glass is comparable with binary chal- 
cogenide glass of GeS2 composition [30]. 

T A B L E  II I  Thermal stability criteria 

pK(T~) 4.7 _+ 0.1 
G 1.19 +_ 0.05 
S 4 •  
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5. Conclusion 
The kinetic analysis of the crystallization process 
of the (InF3)40(ZnFz)zo(BaFz)15(SrF2)20(GdF3) 2- 
(LaF3)I(DyF3)2 glass is presented. Several measure- 
ments at various heating rates provide a calculation of 
the activation energy and a very simple and conve- 
nient method of kinetic analysis enables us to deter- 
mine the kinetic model of the crystallization process. 

It was found that this crystallization process can be 
described by the two-parameter of gestfik-Berggren 
equation. The kinetic parameters calculated allow us 
to estimate the criterion of the thermal stability of 
glass. 
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